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Dual-Clustering-Based Hyperspectral Band
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Abstract—Hyperspectral image (HSI) involves vast quantities
of information that can help with the image analysis. However,
this information has sometimes been proved to be redundant,
considering specific applications such as HSI classification and
anomaly detection. To address this problem, hyperspectral band
selection is viewed as an effective dimensionality reduction method
that can remove the redundant components of HSI. Various HSI
band selection methods have been proposed recently, and the
clustering-based method is a traditional one. This agglomerative
method has been considered simple and straightforward, while
the performance is generally inferior to the state of the art.
To tackle the inherent drawbacks of the clustering-based band
selection method, a new framework concerning on dual clustering
is proposed in this paper. The main contribution can be concluded
as follows: 1) a novel descriptor that reveals the context of HSI
efficiently; 2) a dual clustering method that includes the contextual
information in the clustering process; 3) a new strategy that
selects the cluster representatives jointly considering the mutual
effects of each cluster. Experimental results on three real-world
HSIs verify the noticeable accuracy of the proposed method, with
regard to the HSI classification application. The main comparison
has been conducted among several recent clustering-based band
selection methods and constraint-based band selection methods,
demonstrating the superiority of the technique that we present.

Index Terms—Band selection, context, dual clustering, hyper-
spectral angle, hyperspectral image (HSI).

I. INTRODUCTION

YPERSPECTRAL images (HSI) contain rich discrimina-
tive physical clues that come from the narrow continuous
spectral bands. Each of these bands reflects some specific
characteristics that are closely related to the property of the
target. Therefore, a wide range of real-world applications is
benefited, based on the discriminative attribute of HSI, such
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as biological analysis [1], product quality inspection [2], and
medical imaging [3].

However, a problem also exists in that the huge volume of
image information contained in the HSI is not easy to tackle
with, particularly for the case that little labeled information is
included. This drawback brings a heavy burden to HSI classifi-
cation or segmentation [4]. Moreover, the neighboring bands of
HSI are of high correlation, and they are not as discriminative as
we expected, which means that redundant information is con-
tained. This will introduce problems concerning the computa-
tional complexity and, at the same time, affect the following
classification or segmentation process owing to the “curse of
dimensionality” [5]. From this point of view, dimensionality
reduction is necessary.

Existing dimension reduction methods can be divided into
two main branches. The first branch is feature extraction [6],
[7]. This typical method projects the initial HSI information
to a lower dimensional space, leading to a more abstract
representation [8]. The representatives of this branch include
wavelet transform (WT) [9], principal component analysis [10],
linear discriminant analysis [11], and independent component
analysis [12]. Although these methods can produce satisfying
results, they are not always the most appropriate choice for two
inherent drawbacks. The first is that these feature extraction
methods have to consider and deal with the transformation of
the whole data volume to extract new features, which is with
high time complexity. The second is that some crucial informa-
tion is distorted due to the destruction of band correlation in the
HSI data transforming process [13], causing loss of physical
meaning and interpretation of HSI.

Compared with feature extraction, the other branch is well
known as feature selection, which is with apparent advantage
[14], [15]. The aim is to cannibalize the most informative
and distinctive HSI bands to construct a subset. These desired
candidates should be the ones with the most critical factors.
The ultimate selected fewer decisive bands should represent the
whole image with no loss of effectiveness [16].

As an important topic in HSI analysis, hyperspectral band
selection has recently attracted the attention of researchers.
A reliable band selection process not only facilitates the HSI
identification [17], transmission [18], and detection [19] but
also increases the efficiency of HSI analysis [20]. This paper
mainly concentrates on the classification application facilitated
by the band selection [20], [21].

Various methods have been proposed to support the process
of HSI band selection, and three main groups of methods can be
summarized: constraint-based [22]-[24], clustering-based [13],
[25]-{27], and sparse-based methods [4], [28]. The first type

0196-2892 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1432

is by imposing a constraint such as dependence minimiza-
tion to achieve the selected bands. The representative work
includes constrained energy minimization (CEM) and linearly
constrained minimum variance (LCMV) [22], [29], [30]. Both
methods linearly constrain the target bands by minimizing the
interfering effect brought by the other bands. However, this
kind of method is only based on the consideration of band
correlation, regardless of the representation of the initial HSI
cube. The clustering-based method is only complementary to
the former one. It can be generally summarized into two steps
[13], [31]. First, group the bands into clusters, in which the
intracluster variance is minimized and the intercluster variance
is maximized. Second, choose the bands with the highest aver-
age correlations from their corresponding clusters as the final
output. However, this rough traditional strategy, which only
focuses on the raw spectral features of the HSI cube, barely
digs for the contextual clue of the HSI pixel, and constraints
among bands are not taken into serious consideration. A pop-
ular kind of method that has appeared in recent works is the
sparsity-based method [4], [28]. It takes the desired bands as
the dictionary. Through adjusting the expressive coefficient, the
initial HSI cube is reconstructed by the dictionary. This joint
selection process improves the correlation of the selected bands.
However, the representativeness of these selected bands still
needs to be enhanced, and the efficiency is also a vital problem,
as compared with the former clustering-based methods.

We believe that the clustering-based method with high effi-
ciency can be further exploited, if the mutual affection among
the representatives of the clusters is taken into consideration.
To be more specific, the selected bands should be treated as a
whole rather than as independent ones [25]. This assumption
gives a hint to the potential improvement of the traditional
clustering framework. In this paper, we propose a new frame-
work named dual-clustering-based band selection by context
analysis (DCCA). The main contributions are as follows:

* Consider the context information of HSI bands in the
process of dual clustering. The context of a specific el-
ement in HSI contains both the neighboring bands and its
neighboring pixels. We include the context information of
HSI bands into the band clustering process and convert the
band selection to a dual clustering problem [32]. In our
clustering process, the contexts of HSI and the raw HSI
are grouped simultaneously. Then, the two results will
influence each other through the dual clustering principle.
As far as we are concerned, utilizing context to enhance
the unsupervised raw band clustering has never been
proposed before.

» Designanew pairwise hyperspectral angle (PHA) descrip-
tor for HSI. Hyperspectral angle is one of the means that
measure the similarity between two neighboring pixels [33],
[34]. The two sides of this angle are constructed by vectors
representing the spectra of the two pixels. In this paper, we
introduce two new kinds of hyperspectral angles named
PHA, to exploit the context information of a specific
pixel. Each pairwise angle appears simultaneously, i.e.,
one for neighboring bands and the other for neighboring
pixels. The two descriptors explore the different aspects
of HSI and act as a complementary to each other.
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Fig. 1. Illustration for the relation between observable views and labeling
solutions in the clustering process. (a) One view against one solution. (b) Two
views against one solution. (c) One view against two solutions. (d) Two views
against two solutions.

* Propose a groupwise strategy for representation (GSR)
of clusters. In traditional clustering-based band selection
methods, every cluster is treated as an independent one,
and the selected representatives (bands) of each cluster
have no relation to each other. We hold the view that the
chosen representatives should be viewed as a whole to
realize a better representation of the original data, and a
Jjoint Euclidean distance framework is introduced to solve
this problem.

The remainder of this paper is organized as follows: Section I1
reviews the previous works for hyperspectral band selection.
Section III presents the detailed component descriptions of the
proposed framework. Section IV verifies the superiority of the
proposed framework by experiments and comparisons. Finally,
we conclude the work in Section V.

II. RELATED WORK

Band selection is an effective dimensionality reduction meth-
od [35] for HSI. The main purpose of this technique is to
summarize the most critical information of HSI, which can,
at the same time, relieve the computational burden of the
following data analysis and processing. As for the process of
band selection, existing methods can be roughly divided into
the supervised and the unsupervised. The existence of training
phase makes these two differ from each other, discriminatively.
Due to this difference, unsupervised methods tend to be more
practical in real applications, for the reason that training sam-
ples do not always exist.

This paper mainly focuses on the research of unsupervised
method. Existing unsupervised methods are mainly based on
basic techniques, such as PCA [36], discrete WT [37], and ICA
[38]. The ultimate goal of these methods is to find out the most
discriminative bands to construct the best representative subset
of the original HSI. However, the results of these methods are
still far from satisfying.

The clustering-based method is also one of the main branches
for unsupervised band selection [13]. Existing clustering meth-
ods can be sorted into four categories, according to the different
number of observable views and latent categories [32], as
shown in Fig. 1. The most popular one is the ordinary clustering
illustrated in Fig. 1(a), such as k-means and ISOdata. These
methods only consider one view of the data set, and the solution
is single. Recent advance has come from two perspectives. The
first is the additional observable views of the data set, as shown
in Fig. 1(b), leading to the multiview-based clustering [39],
[40] method employing multiple views of the original data,
instead of one view, to get better performance. There is only
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Dual clustering

Selected bands

Fig. 2. HSI band selection pipeline. For an input HSI, the first step is to extract the main raw feature and associate PHA feature, and these two features include
both the spatial relation and the spectral attribute of HSI. Then, a dual clustering framework is constructed based on these two features, and the final clustering
result is obtained through the mutual effect of the two features. After that, a groupwise strategy is utilized for representation of clusters. The chosen representatives

are taken as the selected bands, finally.

one true clustering result obtained by the effort of both views
and the mutual information (MI) of them. Another well-known
method results in two clustering solutions based on only one
view, as shown in Fig. 1(c). This alternative clustering method
[41] gets multiple clustering results, in the process of which
both the individual clusterings benefit each other. The last one
in Fig. 1(d) is dual assignment clustering [32], [42]. In this
method, each clustering comes from one view, and the two
processes act interactively on each other, to find the optimal
solution of both clusterings.

As far as HSI is concerned, clustering-based band selection
can be conducted, according to various views. These views can
also be regarded as the features of HSI. Different features of
HSI, such as spectral gradient feature [43], gabor texture feature
[44], and shape feature [45], will result in different clustering
solutions. The result is not only closely related with the feature
we choose but also depends on the interaction among the
selected features.

One significant feature of HSI is the spectral angle, which
reflects the spatial relation of neighboring pixels in HSI. It can
be viewed as an effective supplement to the raw feature. The
two sides of this angle is constructed by vectors representing the
spectra of pixels. Therefore, this angle can effectively measure
the similarity of two neighboring pixels. A smaller angle means
higher correlation of the two pixels. However, the construction
of the spectral angle is limited to the utilization of the whole
bands for a specific pixel. The global spectral information is not
necessarily the best. Motivated by this point, we aim to explore
the local contextual information of an HSI pixel and put it in
the framework of dual clustering.

III. PROPOSED FRAMEWORK

Here, we detail our DCCA framework for unsupervised band
selection. The flowchart is shown in Fig. 2, in which the three
procedures each has its own effect, but they should be taken as
an integrated one for the reason that each step is necessary for

the next. The basic idea is the dual clustering based on context
exploration, which can result in a more accurate clustering
of bands. Representatives are then chosen by the groupwise
strategy from every cluster as the selected bands. Finally, to
verify the effectiveness of the former process, these bands are
used to complete the classification of HSI. In the following, we
will describe each functional aspect of the proposed framework
with more details.

A. PHA Descriptor

The context clue of an HSI cube includes two parts. One is
the neighboring spectral bands, and the other is the neighboring
pixels. This 3-D neighborhood system reflects the environment
of a specific pixel. To describe this environment, a PHA de-
scriptor is proposed.

1) Neighborhood System: Suppose the size of the L-band
HSI is w x h, with w indicating the width and h the height.
The PHA is developed in the neighborhood subset of the HSI.
As shown in Fig. 3, we randomly select a 3 x 3 x 3 image
cube from the original HSI, which includes three bands of nine
pixels. Suppose that we denote the kth band in HSI by By, and a
specific pixel by P; ;. In this cube, the bands range from Bj_;
to By41, and the pixels range from P;_; j_; to F;41 j11. Then,
the center of this cube is defined as b;_; 1., which denotes the By,
for P; ; of the original HSI. Similarly, the elements in this cube
range from b;_1 ;1 x—1 10 biy1j4+1,k+1, and the cube can be
viewed as the context of the central b; ; ;.. With these definition,
the PHA is constructed on this neighborhood system.

2) Spectral Angle and Spatial Angle: Based on the theory
of Spectral Angle Mapper [34], the PHA in the neighborhood
subset is proposed. Traditional spectral angle is used for directly
comparing the spectra of two pixels. Denote this angle by S A,
the first vector by v1, and the second one by v5. Then, we have
the following equation:

S A = arccos <&> . (1)
[v1lly % Jlvall
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Fig. 3. Illustration of the PHA. We take the blue subcube as an example. This
subcube includes four elements: b; ; i, b; j k—1, bit1,5k—1, bit1,5 k- The
red line divides this subcube into two parts, and each part represents two bands
for an HSI pixel. Therefore, we can get two 2-D vectors, and casting them to
the vertical and horizontal axes can form a spatial angle of the dual pixels.
Similarly, the green line divides the subcube into two parts, and each part
denotes the same band of the two neighboring pixels. Thus, the spectral angle
of the dual bands can also be obtained like the spatial angle.

However, this spectral angle reflects the global spectral prop-
erty of two specific pixels. No local spectral and positional
clues are considered. Nevertheless, these neglected information
is also critical for characterizing the statistical property of the
HSI. To properly calculate these clues, we change the meanings
of v1 and vy to dual bands and dual pixels in the context of the
examined neighborhood cube, which consequently correspond
to two angles, i.e., spectral angle and spatial angle. The main
difference between these two angles exists in the construction
of coordinates. For the spatial angle, the two sides represent the
spectral clues of two neighboring pixels (e.g., P; ; and P4 ;).
However, different from a traditional representation that utilizes
the whole available spectra, only two consecutive bands are
considered (e.g., Bx—1 and By). The obtained two vectors (e.g.,
[b7;7j7k_1 bi,j,k—l] and [bi—i-l,j,k—l bi-{-l,j,k]) Span a particular
angle in the coordinate space of vertical By and horizontal
Bj;_;. Since there are eight such combinations associated with
the examined b; ; 1., we will have eight local spatial angles.

As for the spectral angle, a similar definition is also followed,
only for that the two sides of the angle are spanned by the
local neighboring pixels of consecutive bands (e.g., [bi41,j,k—1
bi j k1] and [bit1,jk bijx]). The corresponding coordinates
are vertical P; ; and horizontal P;; ;. At the same time, there
also exist eight spectral angles for the examined b; ; .

3) PHA Descriptor: As described earlier, there are, in total,
16 angular values for the examined b; j, i.e., 8 for spatial
angles and 8 for spectral angles. To get a reasonable dimen-
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sionality, we only employ the averaged values, consequently
leading to the spatial angle f,in and the spectral angle f,in,
where n = (i — 1) X w + j is the pixel index. With all these,
we can formally define the PHA descriptor for the kth band as
follows:

7fl%,Nﬂfl§,17 ce

Yo = [fr1,- - fEn] 2)

where N = w X h is the total number of pixels.

B. DCCA

Obtaining the PHA feature together with the raw feature,
we can get two clustering results simultaneously. Interaction
between the two clustering processes is the primary technique
of the dual clustering in our work. Detailed procedures of
DCCA are described in the following.

1) Definition: We define the band selection as a dual clus-
tering problem. Two clustering processes are conducted in-
dividually in parallel. On one hand, we cluster the bands,
according to their raw features. This is the major clustering pro-
cess that reflects the intrinsic property of bands. On the other
hand, we can get another clustering result according to the
context, which can be viewed as the associate clustering. These
two processes are never independent, for the reason that there
should be correlations and the two results should be consistent.
Therefore, the ultimate goal of this dual clustering is to estab-
lish the relationship between them to enhance the performance
of both clusterings. Finally, the enhanced result of the major
clustering process is taken as the final result, whereas the asso-
ciate clustering only acts as an assistance.

In order to model this relationship, the correlation matrix [32]
is employed

p(M, A)

R= 500 = P(A)

3)

in which R is the correlation matrix, and M and A are the main
feature and associate feature, respectively. Three cases can be
summarized from this equation. If ,,, , > 1, m and a are pos-
itively correlated, which means that there is a high probability
that the main feature m coexists with the associate feature a.
While, if R, , =1, m and a are mutually independent. The
last case is that m and a are negatively correlated if R,, , < 1.

2) Dual Clustering: Suppose that the raw description of the
HSI is denoted by X = {x1,x2,...,21}, in which zj, corre-
sponds to the vectorized representation of the kth band. The
PHA associated description is similarly defined as Y = {y1, yo,

.,yr}. There are two phases for the dual clustering, i.e.,
initial clustering and reclustering.

Initial Clustering: Traditional k-means clustering tries to
minimize

L P
J=>3 ripla— pyl @
=1 p=1

using the raw feature, in which P represents the total number of
clusters, p, is the center of the pth cluster, and r; , represents a



YUAN et al.: DUAL-CLUSTERING-BASED HYPERSPECTRAL BAND SELECTION BY CONTEXTUAL ANALYSIS

binary value indicating whether z; belongs to the pth cluster or
not. Note that every x; only belongs to one single cluster.

Analogous to the aforementioned process, Q) clusters can
also be obtained for Y, according to the principle in (4). How-
ever, these initial clustering results are acquired independently.
No interaction and correlation are explored, which might be
otherwise helpful for the clustering purpose. In order to jointly
integrate the two features, we apply the same principle to X and
Y, simultaneously, and develop a similar objective function

L P Q

T =33 S bt = g Pl - )

=1 p=1qg=1

The minimization of (5), with respect to r;, and 774, iS to
reduce the sum distances both to the centroid of X and Y at the
same time.

From the other aspect, considering the relationship of these
two clusters, we should also minimize the following equation,
which is viewed as the second objective function:

P Q
=3 > Rypqlog(Ryq+1). (6)

p=1g=1

The R, 4 follows the definition of (3) as follows:

SEAGELD) ()
" Ha(c)r(en)

in which p(CY’,) represents the probability of band I belonging
to the pth cluster for feature x. This probability is approximated
by the percentage of bands that are allocated to the pth cluster.
The same definition is with p(C} ). p(CF,, CY,) is the joint
probability. We approximate the joint probability by the relative
contingency table, in which the element p(C},,C} ) is the
percentage of bands that are allocated to the pth cluster and the
qth cluster in the two clustering processes, simultaneously.

The value of H reflects the consistency between the two clus-
terings. Smaller H with low entropy is more acceptable, while
larger H should be avoided. To be more clear, H represents the
entropy of R that is utilized to measure the correlation between
the dual clustering processes. Unfortunately, the initial results
from these two clusterings are mostly different, which implies
that the clustering mechanism and results should be adjusted.
To restrict H and J’ to an appropriate balanced one, we have to
optimize the both objective functions simultaneously.

Reclustering: From the aforementioned analysis, we can find
the contradiction between the two objective functions. On one
hand, we hope the results to be with low entropy, while on the
other hand, the results in accord with the criterion of k-means
clustering are not always with the lowest entropy. To strike
a balance, a reclustering process is proposed. This process is
accomplished through introducing the correlation matrix into
the original k-means algorithm, which is defined as follows:

I |l )
p,q Rp7q
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where R},  is the normalized representation of R, , as follows:

1 _ log(1+ Ry 4) . 9)
P log(1+ Ry q)
p.q

In (8), the objective function of the two clusterings is divided
by the corresponding R1 »,q- 1he minimization is to get better
clustering results C* and CY with higher correlation between
the dual clusterings.

After this procedure, each band will be reclustered into the
new optimal dual clusters C* and CY. We recalculate the newly
constructed clusters” centroid {uf, p3, ..., u%} and {ud, ul,

c u'gg} and then return to the first step.

The iteration of these two phases does not terminate until
both the clustering C* and C¥ are stable. Then, the associate
cluster is deserted, and the enhanced major cluster C* enters
into the next step of DCCA. A more detailed pseudocode is
shown in Algorithm 1.

Algorithm 1 Dual Clustering by Context Analysis

Imput: X = {z1,z2,...,2.}, Y ={y1,92,...,y1}
Output: C*, CY
1: pig and p, < INITIALCLUSTERING(X,Y)
2: function RECLUSTERING (u®, u¥)
3:  while C” or C¥ changes do
. P TR [ A z
4: calculate arg min o2 , update C
P:q P
and CY
oiei )|
5: R,, < _#(CT, Cly)
a3
1 log(1+Rp )
6 A, MDY log(1+Rp,q)
7: calculate the e and p,, in C* and CY
8: end while
9:  return C* and CY
10: end function
11:
12: function INITIALCLUSTERING(X,Y")
13:  randomly choose both 11, and 1,
14:  while ux or uy changes do
22 2
15: J « 21 El Z el gllee — wpll*llye — |
p q=1
16: minimize J’, calculate r; , and r; 4
L
12 T1,pT]
17: fp = g — H—
> Ty
=1
L
121 TLqYl
18: Pp = [y < —
% i

=1

19:  end while
20:  return p,; and fi,
21: end function
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TABLEI
COMPARISON OF TIME COMPLEXITY BETWEEN DUAL CLUSTERING AND k-MEANS METHOD

method initial clustering re-clustering Overall T(n)
k-means kL(2n-1)+1 nL 2nkL+1 O(n)
dual clustering | 4nkL+2+n(4kL + 3kL?) — k 2kL n(8kL + 3kL2) + k(2L — 1) +2 | O(n)

3) Computational Complexity Analysis: We discuss the
computational cost of the proposed dual clustering algorithm
for HSI band selection in comparison to the standard k-means
clustering method in this subsection. To differentiate among
the complexities of dual clustering and k-means method with
higher precision, both the arithmetic operations and the big O
notation are used to calculate the computational cost.

First, it is supposed that the iteration times of k-means and
dual clustering are the same and represented by k, the other
parameters of are similar with Algorithm 1. We also suppose
that the k-means process is the initialization of X of dual clus-
tering in Algorithm 1. The number of k-means clusters is n, and
for dual clustering, this is 2n (suppose that the two clustering
processes have the same number of clusters). The number of
bands is L. It is also supposed that all the data that we need
are prepared in advance (including X, Y and the all possible
relation matrix R, ;). The iteration process of k-means and dual
clustering is both divided into two parts, i.e., initial clustering
and reclustering. Time complexities are calculated, respectively
for these two parts. The initial clustering consists of the initial
center selection, as well as clustering, and the reclustering is
to update new clustering centers. These two operations and the
total time complexity are compared in Table 1.

It is not difficult to find that the dual clustering process is
more time consuming than the k-means method, obviously,
which means that this dual clustering is not efficient enough.
However, we can further approximate the time complexity of
both the k-means and dual clustering by O(n). From this point,
the time complexity of these two processes are still with the
same order of magnitude. The extra time of dual clustering
mainly spends on the interaction between the two clustering
processes. However, due to the existence of this interaction, the
clustering accuracy of dual clustering, most of the time, exceeds
the k-means by 5%—10% [32].

C. Groupwise Representative Selection

In this step, we choose representatives from every cluster
as the final selected bands. Traditional methods choose the
representatives only by comparing the bands inside its corre-
sponding cluster [13]. To a certain extent, these choices can
best represent the clusters. However, the selected bands might
not be necessarily discriminative enough, which can lead to a
poor classification performance for the further task. We have to
consider both the representativeness and the distinctiveness of
these representatives, simultaneously. In order to explain this
point, we refer to Fig. 4 as an illustration, from which the
triangular points indicate the mean center of each group and the
circled ones are with maximum interclass distances. Traditional
methods may choose the former as the representatives, but in
our view, which of these two sets will perform better in the

Fig. 4. Choosing process of cluster representatives. Most traditional methods
choose the cluster centers as the representatives, as the triangles show. However,
this setting is not always the best because the discriminative ability is not
necessarily powerful. The between cluster distance should also be considered,
as the circles show.

following classification process is undeterminable. It is possible
that we may achieve a better classification result in the second
case, for the reason that the triangular points are so close and
similar that they are not distinctive enough. From this aspect,
the problem can be translated into finding the optimal points in
this figure that can, on one hand, represent the all data properly
and, on the other hand, demonstrate considerable disparity.

In order to solve this dilemma, we have to consider the rela-
tionship between the two principles. We not only consider the
individual representative ability for each cluster but also explore
their distinctive ability by treating the selected bands together.
In the following, detailed procedures will be introduced.

We cast the problem as a joint Euclidean distance maximiza-
tion problem, which includes the intracluster (the representative
and the other points in a cluster) and intercluster (the repre-
sentatives of each cluster) distances. Suppose that the repre-
sentatives of the clusters are denoted by E = {e1,ea,...,ep},
and the mean centers are denoted by {u1, pto,...,up}. Let
D; ; represent the Euclidean distance between arbitrary two
representatives e; and e;, d; ; the distance between each cor-
responding two cluster centers u; and p;, and c; ; the bias
between e; and 11;. Then, the problem of searching for the most
appropriate representatives can be formulated as

argmax S(E) (10)
€1,€2,...,€p
where
P P
1 D; 1
S(E) == ( = +>\7) . (11)
2 \diy Ciji + Cij

For this joint Euclidean distance, we first encourage the dis-
crimination among representatives by the first term. For this
term, arbitrary D; ; is restricted to the same scale by d; ; to
avoid bias. This term is named the real disparity among rep-
resentatives, which is abbreviated by RD. Higher RD implies
better distinction. Second, we hope that the representatives are
not far from the mean centers and constrained by the second
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Fig. 5. Illustration of ICS.

term. The nearer the representative is to the center, the higher
representativeness it demonstrates. For each pair of represen-
tatives 4 and j, this term includes the sum of ¢;; and ¢; j,
which is named as to-center distance TD. The reciprocal of
TD is the expression of this term. The two terms are balanced
by A. A higher value for this objective function means that
the chosen representatives are with higher discrimination that
can better represent the whole HSI data, and at the same time,
the expressive ability inside each cluster is more powerful.
Moreover, we find that the TD changes much faster than RD.
To balance their effects, we heuristically set lambda as 0.1.
However, a problem exists in that its an NP problem to
optimize this equation. Every settlement of an individual rep-
resentative will influence the choice of other representatives.
Therefore, we have to jointly consider all the distances to find
the global optimal solution. Suppose that there are n clusters
and the average cluster volume is k. The computation complex-
ity of exhaustive search can be approximated by O(n? x k™).
To reduce this to polynomial complexity, we introduce the Im-
mune Clonal Strategy (ICS) [24] to solve this problem. We take
(10) as the affinity function in the ICS. The representatives are
regarded as the antibodies, and the original HSI data is viewed
as the antigen. Various antibodies have different effectiveness
for the antigen. By maximizing the affinity function, the best
antibodies are chosen. The detailed optimization procedure
is modeled as an iterative process, as shown in Fig. 5. It
includes three phases: clone, mutation, and selection. Through
this operation, the general time complexity reduces to O(n?).
Clone Phase: At the very first, we randomly pick out n sets
of candidate representatives as the antibodies &'(t) = { E1(¢),
Es(t),..., E,(t)}. For notational simplicity, we omit the it-
eration number ¢ in the following explanation with no loss of
understandability. Take the ¢th antibody as an example. The
number of clones n.(F;) depends on the affinity of E;. The
antibody with higher affinity is encouraged to generate more
clones. To be specific, suppose that [V, is the maximum number
of clones predefined as a threshold. Then, n.(F;) is defined as

S(Ei)
max S(E;)

j=12,.n

ne(E;) = Int x N, (12)

where Int(.) is the rounding up function. After the clone phase,
we denote the clones of the antibody E; by &' = {E}, E},,

T Eil,nc(Ei)}'

Mutation Phase: The randomly chosen antibodies are not the
best. Therefore, a mutation phase after the clone phase is nec-
essary. For example, for the antibody F;, we randomly replace
N, representatives in its clone E} j by the same number of el-
ements, each from the corresponding cluster. There is no doubt
that these newly introduced elements should differ from the
former representatives, which enrich the diversity of the origi-

1437

TABLE I1

NUMBER OF SAMPLES FOR EACH CLASS OF THE INDIAN PINES IMAGE
Class U \Y T Total
Corn-notill 80 | 20 | 1328 | 1428
Corn-mintill 80 | 20 730 830
Grass-pasture 80 | 20 383 483
Grass/Trees 80 | 20 630 730
Hay-windrowed 80 | 20 378 478
soybeans-notill 80 | 20 872 972
Soybeans-min 80 | 20 | 2355 | 2455
Soybean-clean 80 | 20 493 593
Woods 80 | 20 | 1165 1265

nal antibodies. After this, mutated antibodies &7 = {E?, E7,,
cee EZHC(Ei)} are obtained.

Selection Phase: With the obtained antibodies, which are
manifestly more various than the original set, we will select
the most promising ones for the next round of processing. The
principle is also defined with the affinity values. Higher ones
indicate more fitness. Therefore, we have

Ei(t+1)= argmax{S (Eil) , S (Ezlg) ey
E

xS (Eluen) S (B) .S (B2) oS (Bduey) |
(13)

which means that the antibody with the largest affinity value is
taken as F;(t 4+ 1) to enter the next iteration.

The iteration does not terminate until the change between
S(E;) and S(E;(t + 1)) is smaller than My, or the maximum
number of iteration M, is reached.

IV. EXPERIMENTS AND ANALYSES

This section will show the experimental results of our method
compared with the existing band selection methods. To verify
the performance, we apply the selected bands to hyperspectral
classification. The number of selected bands has a wide range,
and three data sets are chosen to demonstrate the superiority of
our method.

A. Data Sets

Three publicly available HSIs are applied to verify the supe-
riority of our method. They are Indian Pines, Salinas, and Pavia
University. The description are as follows.

The Indian Pines image was gathered over a vegetation area
in Northwestern Indiana by the AVIRIS sensor. The image
whose spatial resolution is 20 m/pixel consists of 145 x 145
pixels and 224 spectral reflectance bands. Sixteen classes of
interest are contained in this image, of which the nine major
categories are selected in our experiment. One hundred training
samples for each class of interest are randomly chosen for
training. These 100 training samples are further divided into
training and validation sets in our cross-validation process. The
detailed allocation of samples is listed in Table II, in which U
represents the training set for cross-validation, V represents the
validation set, and T represents the testing samples. The same
acronyms are used for Tables IIT and IV.

The Salinas scene was also collected by the AVIRIS sensor
over Salinas Valley, California. The image is characterized by a
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TABLE III
NUMBER OF SAMPLES FOR EACH CLASS OF THE SALINAS SCENE IMAGE

Class U \Y T Total
Brocoli-green-weeds-1 80 | 20 1999 2009
Brocoli-green-weeds-2 80 | 20 | 3626 3726
Fallow 80 | 20 1876 1976
Fallow-rough-plow 80 | 20 1294 1394
Fallow-smooth 80 | 20 2578 2678
Stubble 80 | 20 | 3859 3959
Celery 80 | 20 | 3479 3579
Grapes-untrained 80 | 20 | 11171 | 11271
Soil-vinyard-develop 80 | 20 6103 6203
Corn-senesced-green-weeds 80 | 20 3178 3278
Lettuce-romaine-4wk 80 | 20 968 1068
Lettuce-romaine-5Swk 80 | 20 1827 1927

Lettuce-romaine-6wk 80 | 20 816 916
Lettuce-romaine-7wk 80 | 20 970 1070
Vinyard-untrained 80 | 20 | 7168 7268
Vinyard-vertical-trellis 80 | 20 1707 1807

TABLEIV

NUMBER OF SAMPLES FOR EACH CLASS OF
THE PAVIA UNIVERSITY IMAGE

Class U \Y T Total
Asphalt 240 | 60 6004 6304
Meadows 240 | 60 | 17846 | 18146
Gravel 240 | 60 1515 1815
Trees 240 | 60 2612 2912
Metal sheets 240 | 60 813 1113
Bare soil 240 | 60 4272 4572
Bitumen 240 | 60 681 981
Bricks 240 | 60 3064 3364
Shadows 240 | 60 495 795

spatial resolution of 3.7 m/pixel with 224 spectral bands, which
comprises 512 x 217 samples. The image contains 16 classes
of interest, including vegetables, bare soils, and so on. The
100 training samples for each class of interest are randomly
selected to accomplish the experiment. The detailed allocation
of samples is listed in Table III.

The Pavia University was captured by the Reflective Op-
tics System Imaging Spectrometer (ROSIS) sensor over Pavia,
Northern Italy. The spatial resolution of the image is
1.3 m/pixel, and 103 spectral bands are included. This image
comprises 610 x 340 samples and nine classes of interest. For
this image, we complete the trial with 300 training samples
for each class of interest. The detailed allocation of samples
is listed in Table I'V.

B. Competitors

To verify the superiority of the proposed method, the com-
parison experiment mainly includes three parts.

* The first part comes from the comparison with the existing
clustering-based band selection (CBBS) methods [4],
[13]. These methods tend to join similar bands together
to derive clusters that preserve low variance among bands
inside one cluster, and at the same time, the variance
is high among different clusters. From every cluster, the
best representative, which is the finally selected band, is
chosen. This agglomerative clustering strategy can also
preserve the hierarchal property of hyperspectral data.
To measure the similarity of different bands, two main
methods, i.e., the MI and the Kullback—Leibler divergence
(KLD), are adopted, which we denote as CBBS-MI and
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CBBS-KLD. The first one is to measure to what extent can
a specific band explain another one, and based on this
criterion, the similarity of bands is measured. The second
one is a method that measures the information loss of sub-
stituting one band with another, which is also a popular
CBBS method.

* The second part is the comparison with another kind of
band selection method, namely, constrained band selec-
tion (CBS) [22], [29], [30]. This method uses different
strategies to minimize the correlation and dependence to
select bands. The main strategy includes the CEM and
LCMV. The first one converts a band of image to a vector,
and the later one takes a band image as a matrix. Four spe-
cific criteria, i.e., band correlation minimization (BCM),
band dependence minimization (BDM), band correlation
constraint (BCC), and band dependence constraint (BDC),
divide these competitors to four parts: CEM-BCM/
BDM, CEM-BCC/BDC,LCMV-BCM/BDM, and LCM V-
BCC/BDC.

* In the third part, we verify the effectiveness of different
components in DCCA. First, we replace the dual clus-
tering with the traditional k-means method and keep the
other steps unchanged. The obtained method is named as
ordinary-clustering-based band selection (OCBBS). The
comparison between DCCA and OCBBS can prove the
effectiveness of dual clustering, and the comparison be-
tween OCBBS and CBBS can show the usefulness of the
groupwise representative selection strategy. Second, for
DCCA, we compare it with dual-clustering-based band
selection without context analysis (DCWCA) to justify
the effectiveness of contextual clues. We take the spectral
value feature and spectral gradient feature as two observ-
able views of DCWCA, instead of the proposed contex-
tual clue.

C. Classifier Description

In order to evaluate the performance of the proposed band
selection method, the selected bands are used to accomplish
the process of HSI classification. Higher classification accu-
racy means that the selected bands are more discriminative
and can represent the original HSI better. The classification
methods that we choose include the naive Bayes method [46],
k-nearest neighborhood (kNN) [47], classification and regres-
sion trees (CART) [48], and support vector machine (SVM)
[49], [50]. For the naive Bayes method, we suppose that the
data are in accord with a normal Gaussian distribution. Density
function is estimated by the maximum-likelihood method, and
the prior probabilities for each class are estimated from the
relative occurrence frequencies of the classes in training. As
a nonparametric, the CART method whose parameter is not
that important only includes two regular steps: tree building
and predict. For the parameter of kNN, the k represents the
scale of neighboring pixels, and the distance specifying the
distance metric is Euclidean. As for SVM, we select the radial
basis function (RBF) kernel and multiclass support based on a
one-against-all scheme to accomplish our experiment, tak-
ing advantage of LibSVM (C-support vector classification
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Fig. 6. Classification result on Indian Pines image. (a)-(d) Classification results of SVM, kNN, CART, and Naive Bayes, respectively.

(C-SVC), RBF). The remaining insignificant parameters of
these four methods are the same as the default setting of
MATLAB 2014a without any changes. We use the cross-
validation to train the parameters in SVM and kNN. The
corresponding allocations of samples are given in Tables II-1V.

1) Naive Bayes: This traditional method is widely used in
image classification. The prior possibility and distribution is
first calculated on the training samples, and based on this
information, the possibility of each testing sample belonging
to each class is obtained. This method is with high efficiency,
although the accuracy is always unsatisfying.

2) kNN: This HSI classification method is based on a majority-
voting scheme. The testing sample is classified by the neigh-
boring training samples. The main categories of the training
samples may determine the central one. When the training sam-
ples are large, the result will turn out to be with high accuracy.
Moreover, the only parameter k representing the scale of neigh-
boring pixels is determined in fivefold cross-validation to avoid
bias. This parameter ranges from 1 to 100, with a step size
increment of 1. By the experiment, we find with a neighboring
size of 2 in Indian Pines, 4 in Salinas scene, and 4 in Pavia
University, The cross-validation is with the best performance.

3) CART: As a famous nonparametric method, this method
is based on the binary-decision-tree technique. The main idea of
this algorithm is to split the initial data. The initial data are first
divided to two subdata, and then, the same process continues
in the subdata. The data splitting do not stop until the ultimate
classification result is achieved. The category of testing sample
is predicted effectively by this method.

4) SVM: SVM is one of the most accurate classification
technique. This method can roughly be divided into two types,
i.e., one-against-one SVM and one-against-all SVM, and we
choose the latter. This method first trains the decision boundary
on the training set. Then, for the testing samples, the categories
are obtained by maximizing the margin of the decision bound-
ary. We use SVM classification with RBF kernel. Fivefold
cross-validation is conducted to avoid parameter bias, with the
penalty parameter C' of the SVM being tested between 1 x 103
and 1 x 109, with a step size increment of 1 x 103, and the
kernel length scale o of the RBF kernel being tested between 10
and 1000, with a step size increment of 10. On different images,
the best parameters are almost the same, and we only set C' as
1 x 105 and o as 100, after cross validation. These obtained
best parameter values are used in the classification.

D. Experimental Results

To show a convictive result of the band selection method, the
selected band number ranges from 5 to 80, for the reason that,
when the number of bands reaches 80, the accuracy is almost
stable. However, for a clear presentation, the results are sampled
every five bands. Before detailed introduction and comparison,
some preliminaries should be introduced first.

e In our method, the clustering step is the fundamental
process. However, both the dual clustering process and
the k-means method can only get similar but never the
same clustering results for every time of experiment. The
main reason lies in that the initial centers of clusters
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Fig. 7. Classification result on Salinas scene image. (a)—(d) Classification results of SVM, kNN, CART, and Naive Bayes, respectively.

are chosen randomly that causes the inherent instability.
Therefore, the accuracy results involving the two cluster-
ing procedures are all averaged results for several times of
clustering tests.

* In our view, the classification results with fewer bands
would reflect the effectiveness of band selection process
more obviously. The reason exists in that the main pur-
pose of band selection is to find out the least bands with
the most abundant information, which can relieve the
workload of the following HSI processing such as image
classification or segmentation. As a result, the redundant
bands should be as few as possible. If the selected band
number is not large but the performance is satisfying, we
think that the band selection method is very effective.
To make a distinct comparison of the bands that we
selected, we first demonstrate the results in Figs. 6-8.
Another more detailed list with mean values and variances
is in Tables VI-VIII, where results focusing on the bands
ranging from 5 to 20 are further enhanced. Furthermore,
we also give out the specific chosen bands in Table V as
representatives that correspond to the listed result shown
in Tables VI-VIIL.

* There are several parameters to be set in this experiment.
In the step of representative band selection, the two pa-
rameters N, and NN,, need to be determined. However,
we find that N, and N,, mainly influence the number
of iterations. Larger values will lead to more clones and
mutations in a single step. However, the change rate may
be too quick to miss the right answer. Smaller values will

give a steady change of the antibodies but more iterations.
Therefore, we empirically set the two parameters as 5 in
all the experiments. There are also two thresholds in the
ICS step, i.e., My, and M;,. From the experimental obser-
vation, 10~ and 60 are adequate for the two variables.

Inthe following, we will give a detailed analysis and compari-
son of the experimental results. In Figs. 6-8 and Tables VI-VIII,
we can get a general impression that the proposed DCCA can
outperform the others most of the time. However, the perfor-
mances on different images and classifiers slightly vary with
each other.

1) Comparison With Clustering-Based Methods: The pro-
posed DCCA,DCWCA, and OCBBS are based on the clustering
prototype. Thus, we compare them with traditional clustering-
based methods, including CBBS-MI and CBBS-KLD. From the
results, we can say the best performance comes from the dual-
clustering-based methods DCCA and DCWCA. Moreover,
OCBBS also performs well. The CBBS-MI and CBBS-KLD
methods perform slightly worse compared with the former
ones. The main reason for this difference comes from the clus-
tering process.

These five methods are all based on clustering. However, as
[13] shows, the clustering process plays an important role in
this kind of technique. The better the cluster process, the more
adequate the selected bands become. The former two methods
DCCA and DCWCA introduce the dual clustering process,
which consider the clustering process from two views. The
two views benefit each other and bring a better cluster result.
Nevertheless, the latter ones only take one perspective into
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Classification result on Pavia University image. (a)—(d) Classification results of SVM, kNN, CART, and Naive Bayes, respectively.

Chosen bands

K=5

K=10

K=15

K =20

Indian Pines image

Salinas scene image

21, 42, 69, 132, 175

32, 45, 91, 142, 168

9, 18, 48, 55, 76, 98,
143, 154, 189,196

26, 40, 42, 46, 59, 95,
117, 123, 182, 217

13,22, 28, 37,51, 62,
70, 81, 86, 98, 126,
141, 163, 195, 201

7, 17, 20, 33, 38, 40,
42, 52, 64, 66, 80,
116, 137, 194, 220

8, 13, 27, 34, 39, 41,
48, 68, 74, 76, 71,
100, 133, 141, 143,
149, 162, 168, 188,
200

6, 17, 35, 39, 40, 53,
61, 76, 80, 81, 91,
103, 114, 136, 156,

80

Pavia University image 10, 59 , 70, 76, 88

2, 11, 23, 28, 44, 50,
72,76, 83, 91

186, 194, 205, 213,

215
1,4,8,11,17,26,38, | 1,4,8,12,17,22,29,
42,48, 63,68,72,78, | 32,43,48,55, 62, 68,
82, 92 72,74, 78, 83, 85, 92,

99

consideration. As for CBBS-MI and CBBS-KLD, these two
methods achieve almost identical results, for the reason that
KLD and MI are only two kinds of criterions for similarity
measurement, and the basic technique for this kind of methods
are the same.

For DCCA and DCWCA, the former is relatively more
superior than the latter, particularly as shown in Tables VI-VIIIL.
The difference between these two verifies the importance of
context clue. Most of the time, DCCA, which makes use of
the PHA feature of the band context, outperforms DCWCA.
Nevertheless, the two views of DCWCA come from the raw
feature and the gradient feature [51]. Compared with PHA,
the gradient feature, which merely illustrates the changing
process of the neighboring bands, fails to consider the spatial

relation of HSI. The advantage of PHA helps DCCA select
more competitive bands. In particular, on Indian Pines and
Pavia University images, the superiority of DCCA is manifest.

For OCBBS and DCCA, the comparison can more convinc-
ingly tell the fact that dual clustering is more useful than tra-
ditional clustering. Thus, DCCA performs better than OCBBS.
Another comparison between OCBBS- and CBBS-based meth-
ods demonstrates the significance of groupwise band selec-
tion strategy. The fundamental difference of them is that the
groupwise process selects representatives of clusters. The pro-
posed DCCA takes the intercluster distance into consideration,
which will enhance the discrimination among bands. While the
CBBS-based methods only consider the intracluster distance,
which leads to a limited discriminative ability.
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TABLE VI
CLASSIFICATION ACCURACY FOR INDIAN PINES IMAGE (THE BEST PERFORMANCE IS EMPHASIZED IN BOLDFACE)

CBBS- CEM- CEM- TCMV- TCMV-
SVM DCCA DCWCA | OCBBS CBBS-MI | 1 p BCM/BDM | BCC/BDC | BCM/BDM | BCC/BDC
k=53 0.6383 06333 06190 06028 04773 04779 05042 04188 04188
K=10 0.7301 0.7290 0.7309 0.6515 0.6675 0.5021 0.6611 0.5970 0.6116
K=15 0.7383 0.7548 0.7644 0.6723 0.7140 0.5308 0.6835 0.6587 0.6587
K =20 0.7875 0.7857 0.7721 0.6840 0.7255 0.5356 0.6994 0.6796 0.6933
CBBS- CEM- CEM: LCMV- LCMV-
kNN DCCA DCWCA | OCBBS CBBS-MI | k1 p BCM/BDM | BCC/BDC | BCM/BDM | BCC/BDC
K=53 06625 06599 0.6604 0.6756 05571 0.6025 05852 05232 05232
K=10 0.7001 0.6776 0.6766 0.6848 0.6966 0.6272 0.6704 0.6340 0.6270
K=15 0.6788 0.6711 0.6871 0.6926 0.6629 0.6415 0.6592 0.6766 0.6766
K =20 0.6733 0.6831 0.6833 0.6923 0.6594 0.6379 0.6529 0.6797 0.6814
CBBS- CEM- CEM- LCMV- LCMV-
Cart DCCA DCWCA | OCBBS CBBS-MI | y1p BCM/BDM | BCC/BDC | BCM/BDM | BCC/BDC
k=3 0.6250 06194 05698 0.6028 04471 0.4760 05082 04406 04406
K=10 0.6172 0.6232 0.6079 0.5874 0.5874 0.4994 0.5685 0.5268 0.5471
K=15 0.6216 0.6168 0.6036 0.5835 0.5835 0.5223 0.5929 0.5747 0.5747
K =20 0.6301 0.5985 0.6103 0.5905 0.5905 0.5224 0.5935 0.5953 0.6024
: CBBS- CEM- CEM- LCMV- LCMV-
NaiveBayes | DCCA DCWCA | OCBBS CBBS-MI | ¢ip BCM/BDM | BCC/BDC | BCM/BDM | BCC/BDC
K=3 05112 05042 04874 04562 04456 04569 04543 04291 04291
K=10 0.5144 0.5247 0.5096 0.4741 0.4825 0.4597 0.4539 0.4408 0.4416
K=15 0.5080 0.5122 0.5206 0.4775 0.4857 0.4640 0.4658 0.4480 0.4480
K =20 0.5292 0.5208 0.5263 0.4791 0.4935 0.4615 0.4640 0.4421 0.4451
TABLE VII
CLASSIFICATION ACCURACY FOR SALINAS SCENE IMAGE (THE BEST PERFORMANCE IS EMPHASIZED IN BOLDFACE)
CBBS- CEM: CEM: TCMV- TCMV-
SVM DCCA DCWCA | OCBBS CBBS-MI | y1p BCM/BDM | BCC/BDC | BCM/BDM | BCC/BDC
K 0.8681 0.8747 0.8683 08284 0.7726 05004 08223 0.7825 0.7804
K=10 0.8836 0.8845 0.8939 0.8390 0.8209 0.7414 0.8283 0.8096 0.8096
K=15 0.9002 0.8989 0.8881 0.8390 0.8407 0.7641 0.8362 0.8251 0.8251
K =20 0.8994 0.8947 0.8977 0.8449 0.8415 0.7886 0.8401 0.8314 0.8318
CBBS- CEM- CEM- LCMV- LCMV-
kNN DCCA DCWCA | OCBBS CBBS-MI | ¢1p BCM/BDM | BCC/BDC | BCM/BDM | BCC/BDC
k=3 0.8405 08396 0.8361 0.8006 0.7716 06313 0.8035 07685 07700
K=10 0.8502 0.8452 0.8471 0.7997 0.7944 0.7575 0.8032 0.7859 0.7859
K=15 0.8461 0.8491 0.8495 0.8006 0.8056 0.7639 0.8023 0.7908 0.7908
K =20 0.8502 0.8466 0.8461 0.8072 0.8068 0.7784 0.8061 0.7933 0.7944
CBBS- CEM- CEM- LCMV- LCMV-
Cart DCCA DCWCA | OCBBS CBBS-MI | 1 p BCM/BDM | BCC/BDC | BCM/BDM | BCC/BDC
k=3 08213 08212 08174 07437 0.6645 04311 07573 0.6625 06391
K=10 0.8284 0.8271 0.8310 0.7341 0.7163 0.6539 0.7323 0.6862 0.6865
K=15 0.8282 0.8310 0.8311 0.7506 0.7440 0.6630 0.7292 0.7181 0.7164
K =20 0.8389 0.8290 0.8299 0.7243 0.7444 0.6939 0.7129 0.7164 0.7342
: CBBS- CEM- CEM- LCMV- LCMV-
NaiveBayes DCCA DCWCA OCBBS CBBS-MI KLD BCM/BDM | BCC/BDC BCM/BDM | BCC/BDC
K=3 07667 07695 0.7908 07196 0.6978 05412 07528 0.6957 0.6902
K=10 0.7850 0.7911 0.7879 0.7252 0.7071 0.6467 0.7338 0.6767 0.6767
K=15 0.7922 0.7985 0.7835 0.7243 0.7049 0.6447 0.7229 0.7235 0.7235
K =20 0.7873 0.7928 0.7843 0.7291 0.7042 0.6379 0.7202 0.7387 0.7447
2) Comparison With Constraint-Based Methods: We also 3) Analysis for Different Images: We also want to make a

compare our method DCCA with the CBS methods, includ-
ing CEM-BCM/BDM, CEM-BCC/BDC, LCMV-BCM/BDM,
and LCMV-BCC/BDC. In general, DCCA outperforms the
constraint-based ones, although the LCMV-based method per-
forms slightly better on the Pavia University image. The CEM-
based methods are always the poorest. Another principle that
can also be concluded for constraint-based method is that the
accuracy always rises with the increasing number of selected
bands. In addition, the better performance of these kinds of
methods always comes with a higher number of selected bands.
This phenomenon diverts from the desired property of band
selection. We hope that the fewer bands can achieve satisfying
results.

detailed analysis on each image. Generally, the Indian Pines
image is with higher difficulty for classification, and the other
two ones are easier to classify. On Indian Pines, the dual
clustering-based methods take the leading position for SVM
and naive Bayes classifiers, as shown in Fig. 6 and Table VI.
For the other two classifiers CART and kNN, their performance
is about the same with CBBS-MI and CBBS-KLD. In addition,
we have to emphasize that, for DCCA, when the selected bands
are few, the results of classification are still satisfying, which
is not always the case for the other comparative methods. For
example, the accuracy of kNN reaches 70.01% with ten bands,
which outperforms the classification result of 69.46% obtained
by all bands. The same case is true for the SVM classifier.
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TABLE VIII
CLASSIFICATION ACCURACY FOR PAVIA UNIVERSITY IMAGE (THE BEST PERFORMANCE IS EMPHASIZED IN BOLDFACE)

CBBS- CEM- CEM- LCMV- LCMV-
SVM DCCA DCWCA | OCBBS CBBS-MI | g1 p BCM/BDM | BCC/BDC | BCM/BDM | BCC/BDC
k=35 0743 07610 07602 07252 07142 05171 05434 0.7249 0.7295
K=10 0.8416 0.8579 0.8545 0.7754 0.8070 0.5735 0.6043 0.7706 0.7706
K=15 0.8737 0.8711 0.8766 0.8205 0.8489 0.5849 0.6493 0.8270 0.8383
K =20 0.8992 0.8868 0.8933 0.8556 0.8618 0.6321 0.6713 0.8452 0.8452
CBBS- CEM- CEM- LCMV- LCMV-
kNN DCCA DCWCA | OCBBS CBBS-ML | ¢1p BCM/BDM | BCC/BDC | BCM/BDM | BCC/BDC
K=35 07838 07589 07741 07476 07427 0.4997 0.5653 07182 07251
K=10 0.7860 0.7852 0.7890 0.7539 0.7741 0.6209 0.6081 0.7393 0.7393
K=15 0.7929 0.7891 0.7936 0.7413 0.7594 0.6387 0.6443 0.7562 0.7589
K =20 0.7942 0.7936 0.7971 0.7527 0.7696 0.6745 0.6614 0.7570 0.7570
CBBS- CEM- CEM- LCMV- LCMV-
Cart DCCA DCWCA | OCBBS CBBS-MI | yip BCM/BDM | BCC/BDC | BCM/BDM | BCC/BDC
K=5 07227 07015 077035 05532 06173 03316 04115 05654 05693
K=10 0.7385 0.7272 0.7292 0.6020 0.6216 0.4456 0.4935 0.5856 0.5858
K=15 0.7477 0.7383 0.7464 0.6238 0.6610 0.4668 0.5218 0.6184 0.6189
K =20 0.7406 0.7324 0.7350 0.6407 0.6555 0.5029 0.5204 0.6343 0.6346
: CBBS- CEM- CEM- LCMV- LCMV-
NaiveBayes | DCCA DCWCA | OCBBS CBBS-MI | ¢ip BCM/BDM | BCC/BDC | BCM/BDM | BCC/BDC
k=5 0.6809 0.6663 06715 0.654T 06410 04876 05737 04700 0.4603
K=10 0.6753 0.6644 0.6696 0.6469 0.6154 0.4907 0.5496 0.4653 0.4653
K=15 0.6840 0.6745 0.6680 0.6393 0.6404 0.4892 0.5406 0.4990 0.4668
K =20 0.6776 0.6715 0.6773 0.6446 0.6369 0.4856 0.5377 0.4881 0.4801

The accuracy reaches 78.75%, with 20 bands, which is not far
from the 79.69%, with all bands. Moreover, when the number
of bands reaches 40, the accuracy is 80.14% and sometimes
higher, with more bands.

On the Salinas image, as shown in Fig. 8 and Table VII,
DCCA is generally with the best performance, and DCWCA
and OCBBS sometimes also get the comparable results as far
as the classification accuracy is concerned. On this image,
for different classifiers, the advantage of the proposed band
selection methods is obvious. Most of the time, the classifica-
tion performance is already acceptable with ten bands selected
by our methods. When the number of bands increases, the
accuracy generally rises, but it does not change too much.
However, for the other comparative band selection methods, the
performance is not fine, particularly for the constraint-based
methods. CEM-BCM/BDM is always the poorest, which we
think is not suitable for this image.

For the Pavia University image, the superiority of the pro-
posed methods is also obvious. When the bands are few, the
dual clustering based methods are with the best performance, as
shown in Table VIII. When the number of bands increases,
CBBS-based methods sometimes slightly surpass DCCA,
DCWCA, and OCBBS in Fig. 8(b) and (d). However, this result
does not cast doubt to the advantage of our methods, for the
reason that the performance of classification with fewer bands
is more convincing in the band selection. Another phenomenon
particularly distinct on this image is that, with the increase
of band number, the accuracy of Naive Bayes reduces. This
is because, for Naive Bayes, the labels of pixels mainly are
inferred by the comparison between the training samples and
the testing samples. However, the number of bands does not
influence the training pixel number. While for the other clas-
sification methods, more bands bring more information that
benefits the classification process. Moreover, we can conclude
that LCM V-based methods lacked consistency. For Indian Pine
and Salinas scenes, the performance of this method is poor.

However, for Pavia University, the result is barely satisfying.
To our regret, the bad performance of CEM-based methods still
does not ameliorate on this image.

In summary, although the performances of the proposed
methods on different images and classifiers differ from each
other, in general the advantage of DCCA can still be concluded.
As shown in Figs. 6-8 and Tables VI-VIII, the accuracy values
of classifications with DCCA selected bands, most of the time,
are the best or nearly the best. We also have to emphasize that,
although the result on Indian Pines is generally inferior to the
other two images, DCCA is still appropriate for Indian Pines.
It can be found that DCCA, most of the time, performs well
compared with the competitors, particularly when the number
of the selected bands is small.

E. Discussion

There are also some abnormal phenomena in the experiments
that we would analyze one by one. On Indian Pines, the advan-
tage of dual-clustering-based methods is apparent, when the
SVM and the naive Bayes method are used for classification.
However, for the other two classification methods CART and
kNN, the dual-clustering-based methods are only neck and neck
with the others. Even for the kNN method, the generally inferior
CEM-based methods sometimes achieve the best accuracy.
This abnormal phenomenon for kNN classification also appears
on the Pavia University image. The main reason is that the
kNN classification is also a kind of clustering method, which
is conducted on spatial neighbors. The clustering-based band
selection method conducts the cluster process on spectral neigh-
bors that are perpendicular to the spatial plane. The advantage
of clustering-based band selection methods cannot be reflected.

Another abnormal phenomenon is that, when the number of
bands is large, the dual-clustering-based methods sometimes
cannot take the leading position. The reason is that, for these
methods, when the bands are 40 or more, the correlation among
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bands increases faster than discrimination. From this point, we
can conclude that the best number of selected bands for dual-
clustering-based methods is 25 to 40. For these 25 to 40 selected
bands, the discrimination is high, and the correlation is the
lowest.

The third abnormal phenomenon is that, among DCCA,
DCWCA, and OCBBS, the DCCA sometimes is not the best.
The reason lies in that, in very rare cases, the context may
include too much unnecessary information that may affect the
performance of DCCA. At the same time, the two views of the
dual clustering sometimes cannot bring nice mutual effects to
each other. In this situation, the OCBBS may outperform the
other two ones. However, this phenomenon is very rare.

A general surprising phenomenon for all methods is that the
best performances do not always exist in the result with the
most bands. Moreover, the accuracy of classification, most of
the time, does not rise with the increase of band number. The
curve only waves as the band number changes. The correlation
and distinction among bands bring this phenomenon. We cannot
always strike a balance between these two limitations by the
varying of the number of bands. Therefore, more bands do not
mean higher accuracy, while a reasonable number of bands will
result in the best accuracy.

V. CONCLUSION

In this paper, a novel technique named dual-clustering-based
HSI classification by context analysis (DCCA) is proposed. The
main work is to select the most discriminative bands, which can
effectively represent the original HSI. By this means, we can
reduce the redundant information of HSI and still enable a high
classification accuracy.

The proposed method introduces dual clustering to HSI
band selection, based on the context information. The context
information is mainly included in the novel PHA feature de-
scriptor, which can be viewed as the first contribution. The
descriptor can take the spatial and spectral information into
consideration, simultaneously, and effectively embody the local
discriminative statistics of HSI. The second contribution lies
in the dual clustering process, which clusters the context and
the raw feature together. The two clustering processes enhance
their respective performances by mutual effects and output the
final augmented result. The last contribution is the represen-
tative selection from each cluster. Different from the existing
clustering-based band selection methods, our method chooses
the representative of each cluster groupwisely. We notice that
the selected bands should not only be the bands that can
represent their corresponding clusters best but also the bands
with the lowest correlation between each other if we take the
selected representatives as a whole. This groupwise technique
is particularly suitable for our dual clustering band selection
framework.

As an unsupervised band selection method, DCCA is robust
and effective, which has been verified in the experiments.
Extensive comparisons also demonstrate the superiority over
the traditional competitors.

However, problems also exist. As for time cost and computa-
tion complexity, the dual clustering process is not as efficient as

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 54, NO. 3, MARCH 2016

k-means clustering. To be more specific, this process may take
tens of seconds. The solution to this drawback is our objective
for the future work.
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